The Variational Bi-Complex for Systems of Semi-Linear Hyperbolic PDEs in Three Variables

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

This paper extends, to a class of systems of semi-linear hyperbolic second order PDEs in three variables, the geometric study of a single nonlinear hyperbolic PDE in the plane as presented in [Anderson I.M., Kamran N., Duke Math. J. 87 (1997), 265-319]. The constrained variational bi-complex is introduced and used to define form-valued conservation laws. A method for generating conservation laws from solutions to the adjoint of the linearized system associated with a system of PDEs is given. Finally, Darboux integrability for a system of three equations is discussed, and a method for generating infinitely many conservation laws for such systems is described.

Опис

Теми

Цитування

The Variational Bi-Complex for Systems of Semi-Linear Hyperbolic PDEs in Three Variables / S. Froehlich // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 36 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced