Painlevé IV Critical Asymptotics for Orthogonal Polynomials in the Complex Plane
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
We study the asymptotic behaviour of orthogonal polynomials in the complex plane that are associated with a certain normal matrix model. The model depends on a parameter, and the asymptotic distribution of the eigenvalues undergoes a transition for a special value of the parameter, where it develops a corner-type singularity. In the double scaling limit near the transition, we determine the asymptotic behaviour of the orthogonal polynomials in terms of a solution of the Painlevé IV equation. We determine the Fredholm determinant associated with such a solution, and we compute it numerically on the real line, showing also that the corresponding Painlevé transcendent is pole-free on a semiaxis.
Опис
Теми
Цитування
Painlevé IV Critical Asymptotics for Orthogonal Polynomials in the Complex Plane / M. Bertola, J.G.E. Rebelo, T. Grava // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 43 назв. — англ.