Linear Representations and Frobenius Morphisms of Groupoids

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

Given a morphism of (small) groupoids with an injective object map, we provide sufficient and necessary conditions under which the induction and co-induction functors between the categories of linear representations are naturally isomorphic. A morphism with this property is termed a Frobenius morphism of groupoids. As a consequence, an extension by a subgroupoid is Frobenius if and only if each fibre of the (left or right) pull-back biset has finitely many orbits. Our results extend and clarify the classical Frobenius reciprocity formulae in the theory of finite groups, and characterize Frobenius extensions of algebras with enough orthogonal idempotents.

Опис

Теми

Цитування

Linear Representations and Frobenius Morphisms of Groupoids / J.J. Barbarán Sánchez, L. El Kaoutit // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 31 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced