A Variational Perspective on Continuum Limits of ABS and Lattice GD Equations

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

A pluri-Lagrangian structure is an attribute of integrability for lattice equations and for hierarchies of differential equations. It combines the notion of multi-dimensional consistency (in the discrete case) or commutativity of the flows (in the continuous case) with a variational principle. Recently, we developed a continuum limit procedure for pluri-Lagrangian systems, which we now apply to most of the ABS list and some members of the lattice Gelfand-Dickey hierarchy. We obtain pluri-Lagrangian structures for many hierarchies of integrable PDEs for which such structures were previously unknown. This includes the Krichever-Novikov hierarchy, the double hierarchy of sine-Gordon and modified KdV equations, and a first example of a continuous multi-component pluri-Lagrangian system.

Опис

Теми

Цитування

A Variational Perspective on Continuum Limits of ABS and Lattice GD Equations / M. Vermeeren // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 31 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced