A Self-Dual Integral Form of the Moonshine Module

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We construct a self-dual integral form of the moonshine vertex operator algebra, and show that it has symmetries given by the Fischer-Griess monster simple group. The existence of this form resolves the last remaining open assumption in the proof of the modular moonshine conjecture by Borcherds and Ryba. As a corollary, we find that Griess's original 196884-dimensional representation of the monster admits a positive-definite self-dual integral form with monster symmetry.

Опис

Теми

Цитування

A Self-Dual Integral Form of the Moonshine Module / S. Carnahan // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 48 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced