NNSC-Cobordism of Bartnik Data in High Dimensions

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

In this short note, we formulate three problems relating to nonnegative scalar curvature (NNSC) fill-ins. Loosely speaking, the first two problems focus on: When are (n−1)-dimensional Bartnik data (Σⁿ⁻¹ᵢ, γᵢ, Hᵢ), i=1,2, NNSC-cobordant? If (𝕊ⁿ⁻¹, γₛₜd, 0) is positive scalar curvature (PSC) cobordant to (Σⁿ⁻¹₁,γ₁, H₁), where (𝕊ⁿ⁻¹, γₛₜd) denotes the standard round unit sphere, then (Σⁿ⁻¹₁,γ₁, H₁) admits an NNSC fill-in. Just as Gromov's conjecture is connected with the positive mass theorem, our problems are connected with the Penrose inequality, at least in the case of n=3. Our third problem is on Λ(Σⁿ⁻¹, γ) defined below.

Опис

Теми

Цитування

NNSC-Cobordism of Bartnik Data in High Dimensions. Xue Hu and Yuguang Shi. SIGMA 16 (2020), 030, 5 pages

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced