NNSC-Cobordism of Bartnik Data in High Dimensions
Завантаження...
Файли
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
In this short note, we formulate three problems relating to nonnegative scalar curvature (NNSC) fill-ins. Loosely speaking, the first two problems focus on: When are (n−1)-dimensional Bartnik data (Σⁿ⁻¹ᵢ, γᵢ, Hᵢ), i=1,2, NNSC-cobordant? If (𝕊ⁿ⁻¹, γₛₜd, 0) is positive scalar curvature (PSC) cobordant to (Σⁿ⁻¹₁,γ₁, H₁), where (𝕊ⁿ⁻¹, γₛₜd) denotes the standard round unit sphere, then (Σⁿ⁻¹₁,γ₁, H₁) admits an NNSC fill-in. Just as Gromov's conjecture is connected with the positive mass theorem, our problems are connected with the Penrose inequality, at least in the case of n=3. Our third problem is on Λ(Σⁿ⁻¹, γ) defined below.
Опис
Теми
Цитування
NNSC-Cobordism of Bartnik Data in High Dimensions. Xue Hu and Yuguang Shi. SIGMA 16 (2020), 030, 5 pages