Analytic Classification of Families of Linear Differential Systems Unfolding a Resonant Irregular Singularity

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We give a complete classification of analytic equivalence of germs of parametric families of systems of complex linear differential equations unfolding a generic resonant singularity of Poincaré rank 1 in dimension n=2 whose leading matrix is a Jordan bloc. The moduli space of analytic equivalence classes is described in terms of a tuple of formal invariants and a single analytic invariant obtained from the trace of monodromy, and analytic normal forms are given. We also explain the underlying phenomena of the confluence of two simple singularities and of a turning point, the associated Stokes geometry, and the change of order of Borel summability of formal solutions in dependence on a complex parameter.

Опис

Теми

Цитування

Analytic Classification of Families of Linear Differential Systems Unfolding a Resonant Irregular Singularity. Martin Klimeš. SIGMA 16 (2020), 006, 46 pages

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced