q-Difference Systems for the Jackson Integral of Symmetric Selberg Type

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We provide an explicit expression for the first-order 𝑞-difference system for the Jackson integral of symmetric Selberg type. The q-difference system gives a generalization of the 𝑞-analog of contiguous relations for the Gauss hypergeometric function. As a basis of the system, we use a set of symmetric polynomials introduced by Matsuo in his study of the 𝑞-KZ equation. Our main result is an explicit expression for the coefficient matrix of the 𝑞-difference system in terms of its Gauss matrix decomposition. We introduce a class of symmetric polynomials called interpolation polynomials, which includes Matsuo's polynomials. By repeated use of three-term relations among the interpolation polynomials, we compute the coefficient matrix.

Опис

Теми

Цитування

q-Difference Systems for the Jackson Integral of Symmetric Selberg Type. Masahiko Ito. SIGMA 16 (2020), 113, 31 pages

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced