Collapsing Geometry with Ricci Curvature Bounded Below and Ricci Flow Smoothing

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We survey some recent developments in the study of collapsing Riemannian manifolds with Ricci curvature bounded below, especially the locally bounded Ricci covering geometry and the Ricci flow smoothing techniques. We then prove that if a Calabi-Yau manifold is sufficiently volume collapsed with bounded diameter and sectional curvature, then it admits a Ricci-flat Kähler metric together with a compatible pure nilpotent Killing structure: this is related to an open question of Cheeger, Fukaya, and Gromov.

Опис

Теми

Цитування

Collapsing Geometry with Ricci Curvature Bounded Below and Ricci Flow Smoothing. Shaosai Huang, Xiaochun Rong and Bing Wang. SIGMA 16 (2020), 123, 25 pages

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced