Degree-One Rational Cherednik Algebras for the Symmetric Group

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

Drinfeld orbifold algebras deform skew group algebras in polynomial degree at most one and hence encompass graded Hecke algebras, and in particular symplectic reflection algebras and rational Cherednik algebras. We introduce parametrized families of Drinfeld orbifold algebras for symmetric groups acting on doubled representations that generalize rational Cherednik algebras by deforming in degree one. We characterize rich families of maps recording commutator relations with their linear parts supported only on and only off the identity when the symmetric group acts on the natural permutation representation plus its dual. This produces degree-one versions of 𝖌𝔩ₙ-type rational Cherednik algebras. When the symmetric group acts on the standard irreducible reflection representation plus its dual, there are no degree-one Lie orbifold algebra maps, but there is a three-parameter family of Drinfeld orbifold algebras arising from maps supported only off the identity. These provide degree-one generalizations of the 𝔰𝔩ₙ-type rational Cherednik algebras 𝐻₀ ̦c.

Опис

Теми

Цитування

Degree-One Rational Cherednik Algebras for the Symmetric Group. Briana Foster-Greenwood and Cathy Kriloff. SIGMA 17 (2021), 039, 35 pages

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced