Separation of Variables, Quasi-Trigonometric 𝑟-Matrices and Generalized Gaudin Models
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
We construct two new one-parametric families of separated variables for the classical Lax-integrable Hamiltonian systems governed by a one-parametric family of non-skew-symmetric, non-dynamical 𝖌𝔩(2)⊗𝖌𝔩(2)-valued quasi-trigonometric classical 𝑟-matrices. We show that for all but one classical 𝑟-matrices in the considered one-parametric families, the corresponding curves of separation differ from the standard spectral curve of the initial Lax matrix. The proposed scheme is illustrated by an example of separation of variables for 𝑁 = 2 quasi-trigonometric Gaudin models in an external magnetic field.
Опис
Теми
Цитування
Separation of Variables, Quasi-Trigonometric 𝑟-Matrices and Generalized Gaudin Models. Taras Skrypnyk. SIGMA 17 (2021), 069, 21 pages