Большие уклонения для обратных стохастических уравнений с квадратичным ростом

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Видавничий дім "Академперіодика" НАН України

Анотація

Доведено принцип великих відхилень для обернених стохастичних рівнянь, пов'язаних із сім'єю марковських процесів з малою дифузією, коефіцієнти яких залежать від малого параметра. При обгрунтуванні даного принципу встановлено рівномірну на компактах збіжність розв'язків напівлінійних параболічних рівнянь другого порядку з малим параметром при старшій похідній і коефіцієнтами, що залежать від цього параметра і слабко збігаються в L2,loc.
We prove the large deviation principle for backward stochastic equations related to a family of Markov processes with small diffusion, where the coefficients of these forward-backward equations depend on a small parameter. To prove this principle, we show the convergence of solutions of second-order semilinear parabolic partial equations, which is uniform on compact sets, with small parameter by the second derivative and coefficients which depend on this parameter and weakly converge in L2,loc.

Опис

Теми

Математика

Цитування

Большие уклонения для обратных стохастических уравнений с квадратичным ростом / И.А. Качанова // Доп. НАН України. — 2011. — № 11. — С. 15-19. — Бібліогр.: 10 назв. — рос.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced