Динамическая устойчивость вязкоупругой цилиндрической панели с сосредоточенными массами
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут проблем міцності ім. Г.С. Писаренко НАН України
Анотація
Рассматривается задача о динамической устойчивости вязкоупругой цилиндрической панели с сосредоточенными массами, основанная на гипотезе Кирхгоффа-Лява в геометрически нелинейной постановке. В уравнение движения цилиндрической панели эффект действия сосредоточенных масс вводится с использованием δ-функции Дирака. Задача решается с помощью метода Бубнова-Галеркина, основанного на многочленной аппроксимации прогибов, в сочетании с численным методом, базирующимся на использовании квадратурных формул. Обоснован выбор сингулярного ядра Колтунова-Ржаницына. Приведены сравнения результатов, полученных по различным теориям. Во всех задачах исследована сходимость метода Бубнова-Галеркина. Показано влияние вязкоупругих свойств материала и сосредоточенных масс на процесс динамической устойчивости цилиндрической панели.
Розглядається задача про динамічну стійкість в’язкопружної циліндричної панелі зі зосередженими масами, що базується на гіпотезі Кірхгоффа-Лява в геометрично нелінійній постановці. У рівнянні руху циліндричної панелі ефект дії зосереджених мас враховується шляхом використання δ-функції Дірака. Задача розв’язується за допомогою методу Бубнова-Гальоркіна на основі багаточленної апроксимації прогинів у поєднанні з числовим методом. Обгрунтовано вибір сингулярного ядра Колтунова-Ржаніцина. Наведено порівняння результатів, що отримані за різними теоріями. У всіх задачах досліджено збіжність методу Бубнова-Гальоркіна. Показано вплив в’язкопружних властивостей матеріалу і зосереджених мас на процес динамічної стійкості циліндричної панелі.
We discuss the problem of dynamic stability of viscoelastic cylindrical panel with lumped masses, based on the Kirchhoff-Love assumption in geometrically nonlinear formulation. The effect of lumped masses is introduced into the equation of motion of the cylindrical panel by using the Dirac δ-function. The problem is solved by the Bubnov-Galerkin method, which is based on polynomial approximation of deflections, in a combination with the numerical method based on use of quadrature formulas. The choice of singular Koltunov-Rzhanitsyn kernel is substantiated. We compare results obtained using different theories. For all problems under study we analyze convergence of the Bubnov-Galerkin method. The effect of the viscoelastic properties of the material and of lumped masses on the dynamic stability process of the cylindrical panel is shown.
Розглядається задача про динамічну стійкість в’язкопружної циліндричної панелі зі зосередженими масами, що базується на гіпотезі Кірхгоффа-Лява в геометрично нелінійній постановці. У рівнянні руху циліндричної панелі ефект дії зосереджених мас враховується шляхом використання δ-функції Дірака. Задача розв’язується за допомогою методу Бубнова-Гальоркіна на основі багаточленної апроксимації прогинів у поєднанні з числовим методом. Обгрунтовано вибір сингулярного ядра Колтунова-Ржаніцина. Наведено порівняння результатів, що отримані за різними теоріями. У всіх задачах досліджено збіжність методу Бубнова-Гальоркіна. Показано вплив в’язкопружних властивостей матеріалу і зосереджених мас на процес динамічної стійкості циліндричної панелі.
We discuss the problem of dynamic stability of viscoelastic cylindrical panel with lumped masses, based on the Kirchhoff-Love assumption in geometrically nonlinear formulation. The effect of lumped masses is introduced into the equation of motion of the cylindrical panel by using the Dirac δ-function. The problem is solved by the Bubnov-Galerkin method, which is based on polynomial approximation of deflections, in a combination with the numerical method based on use of quadrature formulas. The choice of singular Koltunov-Rzhanitsyn kernel is substantiated. We compare results obtained using different theories. For all problems under study we analyze convergence of the Bubnov-Galerkin method. The effect of the viscoelastic properties of the material and of lumped masses on the dynamic stability process of the cylindrical panel is shown.
Опис
Теми
Научно-технический раздел
Цитування
Динамическая устойчивость вязкоупругой цилиндрической панели с сосредоточенными массами / Б.X. Эшматова, Д.А. Ходжаев // Проблемы прочности. — 2008. — № 4. — С. 132-147. — Бібліогр.: 28 назв. — рос.