Качественные свойства решений одного класса эволюционных систем
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Видавничий дім "Академперіодика" НАН України
Анотація
Исследуются нелинейные нестационарные системы, которые используются в качестве
приближения к известной модели Бина теории сверхпроводимости II в трехмерном
случае. Также рассматривается аналогичная система, но с конвекцией, которая играет
роль демпфирования. С этими системами тесно связана система уравнений пористой
среды. Изучены свойства финитности носителя решения задачи Коши для нелинейных нестационарных систем в пространстве.
Дослiджується нелiнiйнi нестацiонарнi системи, що використовуються як наближення до вiдомої моделi Бiна теорiї надпровiдностi II у просторовому випадку. Також розглядається аналогiчна система, але з конвекцiєю, що вiдiграє роль демпфування. З цими системами тiсно пов’язана система рiвнянь пористого середовища. Встановлено властивiсть фiнiтностi носiя розв’язку задачi Кошi для нелiнiйних нестацiонарних систем у тривимiрному випадку.
The nonlinear nonstationary systems used as approximations to the well-known Bean model in the theory of type-II superconductivity in the 3D case are studied. An analogous system with convection term playing the role of damping is considered as well. These systems are closely related to the system of equations for a porous medium. The finiteness of the carrier of a solution of the Cauchy problem for nonlinear nonstationary systems in the 3D case is established.
Дослiджується нелiнiйнi нестацiонарнi системи, що використовуються як наближення до вiдомої моделi Бiна теорiї надпровiдностi II у просторовому випадку. Також розглядається аналогiчна система, але з конвекцiєю, що вiдiграє роль демпфування. З цими системами тiсно пов’язана система рiвнянь пористого середовища. Встановлено властивiсть фiнiтностi носiя розв’язку задачi Кошi для нелiнiйних нестацiонарних систем у тривимiрному випадку.
The nonlinear nonstationary systems used as approximations to the well-known Bean model in the theory of type-II superconductivity in the 3D case are studied. An analogous system with convection term playing the role of damping is considered as well. These systems are closely related to the system of equations for a porous medium. The finiteness of the carrier of a solution of the Cauchy problem for nonlinear nonstationary systems in the 3D case is established.
Опис
Теми
Інформатика та кібернетика
Цитування
Качественные свойства решений одного класса эволюционных систем / А.И. Шевченко, А.С. Миненко // Доповiдi Нацiональної академiї наук України. — 2015. — № 1. — С. 36-40. — Бібліогр.: 8 назв. — рос.