On Scalar and Ricci Curvatures

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

The purpose of this report is to acknowledge the influence of M. Gromov's vision of geometry on our own works. It is two-fold: in the first part, we aim at describing some results, in dimension 3, around the question: which open 3-manifolds carry a complete Riemannian metric of positive or non-negative scalar curvature? In the second part, we look for weak forms of the notion of ''lower bounds of the Ricci curvature'' on non-necessarily smooth metric measure spaces. We describe recent results, some of which are already posted in [arXiv:1712.08386], where we proposed to use the volume entropy. We also attempt to give a new synthetic version of Ricci curvature bounded below using Bishop-Gromov's inequality.

Опис

Теми

Цитування

On Scalar and Ricci Curvatures. Gerard Besson and Sylvestre Gallot. SIGMA 17 (2021), 046, 42 pages

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced