On Scalar and Ricci Curvatures
| dc.contributor.author | Besson, Gerard | |
| dc.contributor.author | Gallot, Sylvestre | |
| dc.date.accessioned | 2025-12-29T11:06:15Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | The purpose of this report is to acknowledge the influence of M. Gromov's vision of geometry on our own works. It is two-fold: in the first part, we aim at describing some results, in dimension 3, around the question: which open 3-manifolds carry a complete Riemannian metric of positive or non-negative scalar curvature? In the second part, we look for weak forms of the notion of ''lower bounds of the Ricci curvature'' on non-necessarily smooth metric measure spaces. We describe recent results, some of which are already posted in [arXiv:1712.08386], where we proposed to use the volume entropy. We also attempt to give a new synthetic version of Ricci curvature bounded below using Bishop-Gromov's inequality. | |
| dc.identifier.citation | On Scalar and Ricci Curvatures. Gerard Besson and Sylvestre Gallot. SIGMA 17 (2021), 046, 42 pages | |
| dc.identifier.doi | https://doi.org/10.3842/SIGMA.2021.046 | |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2020 Mathematics Subject Classification: 51K10; 53C23; 53C21; 53E20; 57K30 | |
| dc.identifier.other | arXiv:2010.08207 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/211303 | |
| dc.language.iso | en | |
| dc.publisher | Інститут математики НАН України | |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | |
| dc.title | On Scalar and Ricci Curvatures | |
| dc.type | Article |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 046-Besson.pdf
- Розмір:
- 739.39 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: