On Scalar and Ricci Curvatures

dc.contributor.authorBesson, Gerard
dc.contributor.authorGallot, Sylvestre
dc.date.accessioned2025-12-29T11:06:15Z
dc.date.issued2021
dc.description.abstractThe purpose of this report is to acknowledge the influence of M. Gromov's vision of geometry on our own works. It is two-fold: in the first part, we aim at describing some results, in dimension 3, around the question: which open 3-manifolds carry a complete Riemannian metric of positive or non-negative scalar curvature? In the second part, we look for weak forms of the notion of ''lower bounds of the Ricci curvature'' on non-necessarily smooth metric measure spaces. We describe recent results, some of which are already posted in [arXiv:1712.08386], where we proposed to use the volume entropy. We also attempt to give a new synthetic version of Ricci curvature bounded below using Bishop-Gromov's inequality.
dc.identifier.citationOn Scalar and Ricci Curvatures. Gerard Besson and Sylvestre Gallot. SIGMA 17 (2021), 046, 42 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2021.046
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 51K10; 53C23; 53C21; 53E20; 57K30
dc.identifier.otherarXiv:2010.08207
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211303
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleOn Scalar and Ricci Curvatures
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
046-Besson.pdf
Розмір:
739.39 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: