Гладкі розв'язки гіперболічних за Шиловим систем
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут кібернетики ім. В.М. Глушкова НАН України
Анотація
Для широкого класу гіперболічних за Шиловим лінійних систем рівнянь із частинними похідними, який охоплює клас Петровського гіперболічних систем зі сталими коефіцієнтами і містить клас рівнянь Гордінга, розглядається питання знаходження гладких класичних розв’язків, які є стосовно просторової змінної фінітними або швидко спадними на нескінченності вектор-функціями. Дослідження проводяться методом перетворення Фур’є у поєднанні з теорією просторів типу S i S’ Гельфанда І. М. і Шилова Г. Є. основних і узагальнених функцій.
We consider a wide class of linear partial differential equations hyperbolic by Shilov, which covers the class of hyperbolic by Petrovsky systems with constant coefficients, and also the class of Gording equations. For such systems, the problem of finding smooth classical solutions, which are vector functions with compact support or rapidly decreasing at infinity, is investigated. Studies are carried out by the Fourier transform method in combination with the theory of spaces of the type S and S’ Gelfand I. M. and Shilov G.E. basic and generalized functions.
We consider a wide class of linear partial differential equations hyperbolic by Shilov, which covers the class of hyperbolic by Petrovsky systems with constant coefficients, and also the class of Gording equations. For such systems, the problem of finding smooth classical solutions, which are vector functions with compact support or rapidly decreasing at infinity, is investigated. Studies are carried out by the Fourier transform method in combination with the theory of spaces of the type S and S’ Gelfand I. M. and Shilov G.E. basic and generalized functions.
Опис
Теми
Цитування
Гладкі розв'язки гіперболічних за Шиловим систем / В.А. Літовченко // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2018. — Вип. 18. — С. 105-112. — Бібліогр.: 11 назв. — укр.