О движении точки, стесненной плоской симметричной связью

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут механіки ім. С.П. Тимошенка НАН України

Анотація

На однопараметричній множині замкнених плоских в'язей, що мають чотири осі симетрії, побудовано систему неперервних процесів з періодами T є √2,8}. Ці процеси виражають значення декартових координат рухомої точки як функцій пройденого шляху. Виявлено 2π періодичні процеси, що відрізняються від класичних тригонометричних знаком кривизни в кожній точці її існування. Обчислено асимптотичні 2³ періодичні процеси і застосовано в задачі про рух матеріальної точки по замкнутій плоско-ребристій поверхні. Вказано спосіб побудови неперервних еволюційних процесів гіперболічного типу, аргументами яких є довжини дуг розімкнених ліній з парою осей симетрії. Встановлено зв'язок диференціала дуги плоскої кривої з лагранжіаном простої динамічної системи ненатурального типу. Побудовано нелінійну динамічну систему другого порядку, частинними розв'язками якої можуть бути Т-періодичні або еволюційні процеси гіперболічного типу, що залежать від початкових значень.
On the one-parametric set of closed plane constraints with four symmetry axes, the system of continuous processes with periods T є √2,8}. is constructed. They express the values of Cartesian coordinates of the moving point as the functions of passed distance. The 2π – periodic processes are revealed, which are differing from the classical trigonometrical process by the curvature sign in every point of its existence. The asymptotic 2³-periodic processes are evaluated and they are applied to the problem on motion of the material point over the closed plane-ribbed surface. A way is shown to construct the continuous evolution processes of hyperbolic type, which arguments are the lengths of arcs of open lines with a pair of symmetry axes. A link is established between the differential of plane curve with Lagrangian of the simple dynamical system of non-natural type. A nonlinear dynamical system of the second order is built, the partial solution of which can be T periodic or evolution processes of hyperbolic type, what depends on the initial values.

Опис

Теми

Цитування

О движении точки, стесненной плоской симметричной связью / Н.П. Плахтиенко // Прикладная механика. — 2013. — Т. 49, № 5. — С. 122-138. — Бібліогр.: 13 назв. — рос.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced