О движении точки, стесненной плоской симметричной связью
dc.contributor.author | Плахтиенко, Н.П. | |
dc.date.accessioned | 2015-10-25T18:41:46Z | |
dc.date.available | 2015-10-25T18:41:46Z | |
dc.date.issued | 2013 | |
dc.description.abstract | На однопараметричній множині замкнених плоских в'язей, що мають чотири осі симетрії, побудовано систему неперервних процесів з періодами T є √2,8}. Ці процеси виражають значення декартових координат рухомої точки як функцій пройденого шляху. Виявлено 2π періодичні процеси, що відрізняються від класичних тригонометричних знаком кривизни в кожній точці її існування. Обчислено асимптотичні 2³ періодичні процеси і застосовано в задачі про рух матеріальної точки по замкнутій плоско-ребристій поверхні. Вказано спосіб побудови неперервних еволюційних процесів гіперболічного типу, аргументами яких є довжини дуг розімкнених ліній з парою осей симетрії. Встановлено зв'язок диференціала дуги плоскої кривої з лагранжіаном простої динамічної системи ненатурального типу. Побудовано нелінійну динамічну систему другого порядку, частинними розв'язками якої можуть бути Т-періодичні або еволюційні процеси гіперболічного типу, що залежать від початкових значень. | uk_UA |
dc.description.abstract | On the one-parametric set of closed plane constraints with four symmetry axes, the system of continuous processes with periods T є √2,8}. is constructed. They express the values of Cartesian coordinates of the moving point as the functions of passed distance. The 2π – periodic processes are revealed, which are differing from the classical trigonometrical process by the curvature sign in every point of its existence. The asymptotic 2³-periodic processes are evaluated and they are applied to the problem on motion of the material point over the closed plane-ribbed surface. A way is shown to construct the continuous evolution processes of hyperbolic type, which arguments are the lengths of arcs of open lines with a pair of symmetry axes. A link is established between the differential of plane curve with Lagrangian of the simple dynamical system of non-natural type. A nonlinear dynamical system of the second order is built, the partial solution of which can be T periodic or evolution processes of hyperbolic type, what depends on the initial values. | uk_UA |
dc.identifier.citation | О движении точки, стесненной плоской симметричной связью / Н.П. Плахтиенко // Прикладная механика. — 2013. — Т. 49, № 5. — С. 122-138. — Бібліогр.: 13 назв. — рос. | uk_UA |
dc.identifier.issn | 0032-8243 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/87803 | |
dc.language.iso | ru | uk_UA |
dc.publisher | Інститут механіки ім. С.П. Тимошенка НАН України | uk_UA |
dc.relation.ispartof | Прикладная механика | |
dc.status | published earlier | uk_UA |
dc.title | О движении точки, стесненной плоской симметричной связью | uk_UA |
dc.title.alternative | On Motion of a Point, Tight by a Plane Symmetric Constraint | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 11-Plakhtienko.pdf
- Розмір:
- 554.98 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: