Суперфрактальність множини чисел, які не мають частоти n-адичних знаків, та фрактальні розподіли ймовірностей
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Вивчено фрактальні властивості (знайдено розмірність Хаусдорфа - Безнковнча і міру Хаусдорфа) спектра випадкової величини з незалежними n-адичннми (n>2,nєN) знаками (цифрами), нескінченна множина яких фіксована. Доведено, що множина чисел відрізка [0;1], які не мають частоти хоча б одного n-аднчного знаку, є суперфрак галом.
We study the fractal properties (we find the Hausdorff-Bezikovich dimension and Hausdorff measure) of the spectrum of a random variable with independent n-adic digits, the infinite set of which is fixed (n≥2,n ∃N). We prove that the set of numbers of the segment [0, 1] that have no frequency of at least onen-adic digit is superfractal.
We study the fractal properties (we find the Hausdorff-Bezikovich dimension and Hausdorff measure) of the spectrum of a random variable with independent n-adic digits, the infinite set of which is fixed (n≥2,n ∃N). We prove that the set of numbers of the segment [0, 1] that have no frequency of at least onen-adic digit is superfractal.
Опис
Теми
Статті
Цитування
Суперфрактальність множини чисел, які не мають частоти n-адичних знаків, та фрактальні розподіли ймовірностей / М.В. Працьовитий, Г.М. Торбін // Український математичний журнал. — 1995. — Т. 47, № 7. — С. 971–975. — Бібліогр.: 5 назв. — укр.