A Linear System of Differential Equations Related to Vector-Valued Jack Polynomials on the Torus
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
For each irreducible module of the symmetric group SN there is a set of parametrized nonsymmetric Jack polynomials in N variables taking values in the module. These polynomials are simultaneous eigenfunctions of a commutative set of operators, self-adjoint with respect to two Hermitian forms, one called the contravariant form and the other is with respect to a matrix-valued measure on the N-torus. The latter is valid for the parameter lying in an interval about zero which depends on the module. The author in a previous paper [SIGMA 12 (2016), 033, 27 pages] proved the existence of the measure and that its absolutely continuous part satisfies a system of linear differential equations. In this paper the system is analyzed in detail. The N-torus is divided into (N−1)! connected components by the hyperplanes xi=xj, i<j, which are the singularities of the system. The main result is that the orthogonality measure has no singular part with respect to Haar measure, and thus is given by a matrix function times Haar measure. This function is analytic on each of the connected components.
Опис
Теми
Цитування
A Linear System of Differential Equations Related to Vector-Valued Jack Polynomials on the Torus / C.F. Dunkl // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 11 назв. — англ.