A Linear System of Differential Equations Related to Vector-Valued Jack Polynomials on the Torus

dc.contributor.authorDunkl, C.F.
dc.date.accessioned2019-02-18T16:50:12Z
dc.date.available2019-02-18T16:50:12Z
dc.date.issued2017
dc.description.abstractFor each irreducible module of the symmetric group SN there is a set of parametrized nonsymmetric Jack polynomials in N variables taking values in the module. These polynomials are simultaneous eigenfunctions of a commutative set of operators, self-adjoint with respect to two Hermitian forms, one called the contravariant form and the other is with respect to a matrix-valued measure on the N-torus. The latter is valid for the parameter lying in an interval about zero which depends on the module. The author in a previous paper [SIGMA 12 (2016), 033, 27 pages] proved the existence of the measure and that its absolutely continuous part satisfies a system of linear differential equations. In this paper the system is analyzed in detail. The N-torus is divided into (N−1)! connected components by the hyperplanes xi=xj, i<j, which are the singularities of the system. The main result is that the orthogonality measure has no singular part with respect to Haar measure, and thus is given by a matrix function times Haar measure. This function is analytic on each of the connected components.uk_UA
dc.description.sponsorshipSome of these results were presented at the conference “Dunkl operators, special functions and harmonic analysis” held at Universit¨at Paderborn, Germany, August 8–12, 2016.uk_UA
dc.identifier.citationA Linear System of Differential Equations Related to Vector-Valued Jack Polynomials on the Torus / C.F. Dunkl // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 11 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 33C52; 32W50; 35F35; 20C30; 42B05
dc.identifier.otherDOI:10.3842/SIGMA.2017.040
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148638
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleA Linear System of Differential Equations Related to Vector-Valued Jack Polynomials on the Torusuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
040-Dunkl.pdf
Розмір:
569.84 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: