q-Difference Systems for the Jackson Integral of Symmetric Selberg Type
Завантаження...
Файли
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
We provide an explicit expression for the first-order 𝑞-difference system for the Jackson integral of symmetric Selberg type. The q-difference system gives a generalization of the 𝑞-analog of contiguous relations for the Gauss hypergeometric function. As a basis of the system, we use a set of symmetric polynomials introduced by Matsuo in his study of the 𝑞-KZ equation. Our main result is an explicit expression for the coefficient matrix of the 𝑞-difference system in terms of its Gauss matrix decomposition. We introduce a class of symmetric polynomials called interpolation polynomials, which includes Matsuo's polynomials. By repeated use of three-term relations among the interpolation polynomials, we compute the coefficient matrix.
Опис
Теми
Цитування
q-Difference Systems for the Jackson Integral of Symmetric Selberg Type. Masahiko Ito. SIGMA 16 (2020), 113, 31 pages