Double Lowering Operators on Polynomials
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Recently, Sarah Bockting-Conrad introduced the double lowering operator ψ for a tridiagonal pair. Motivated by ψ, we consider the following problem about polynomials. Let 𝔽 denote an algebraically closed field. Let 𝑥 denote an indeterminate, and let 𝔽[𝑥] denote the algebra consisting of the polynomials in 𝑥 that have all coefficients in 𝔽. Let 𝑁 denote a positive integer or ∞. Let {𝑎ᵢ}ᴺ⁻¹ᵢ₌₀, {𝑏ᵢ}ᴺ⁻¹ᵢ₌₀ denote scalars in 𝔽 such that ∑ⁱ⁻¹ₕ₌₀𝑎ₕ ≠ ∑ⁱ⁻¹ₕ₌₀𝑏ₕ for 1 ≤ 𝒾 ≤ 𝑁. For 0 ≤ 𝒾 ≤ 𝑁 define polynomials τᵢ, ηᵢ ∈ 𝔽[𝑥] by τᵢ=∏ⁱ⁻¹ₕ₌₀(𝑥−𝑎ₕ) and ηᵢ=∏ⁱ⁻¹ₕ₌₀(𝑥−𝑏ₕ). Let V denote the subspace of 𝔽[𝑥] spanned by {𝑥ᵢ}ᴺᵢ₌₀. An element ψ ∈ End(𝑉) is called double lowering whenever ψτᵢ ∈ 𝔽τᵢ₋₁ and ψηᵢ ∈ 𝔽ηᵢ₋₁ for 0 ≤ 𝒾 ≤ 𝑁, where τ₋₁ = 0 and η₋₁ = 0. We give necessary and sufficient conditions on {𝑎ᵢ}ᴺ⁻¹ᵢ₌₀, {𝑏ᵢ}ᴺ⁻¹ᵢ₌₀ for there to exist a nonzero double lowering map. There are four families of solutions, which we describe in detail.
Опис
Теми
Цитування
Double Lowering Operators on Polynomials. Paul Terwilliger. SIGMA 17 (2021), 009, 38 pages