Double Lowering Operators on Polynomials

dc.contributor.authorTerwilliger, Paul
dc.date.accessioned2025-12-25T13:23:40Z
dc.date.issued2021
dc.description.abstractRecently, Sarah Bockting-Conrad introduced the double lowering operator ψ for a tridiagonal pair. Motivated by ψ, we consider the following problem about polynomials. Let 𝔽 denote an algebraically closed field. Let 𝑥 denote an indeterminate, and let 𝔽[𝑥] denote the algebra consisting of the polynomials in 𝑥 that have all coefficients in 𝔽. Let 𝑁 denote a positive integer or ∞. Let {𝑎ᵢ}ᴺ⁻¹ᵢ₌₀, {𝑏ᵢ}ᴺ⁻¹ᵢ₌₀ denote scalars in 𝔽 such that ∑ⁱ⁻¹ₕ₌₀𝑎ₕ ≠ ∑ⁱ⁻¹ₕ₌₀𝑏ₕ for 1 ≤ 𝒾 ≤ 𝑁. For 0 ≤ 𝒾 ≤ 𝑁 define polynomials τᵢ, ηᵢ ∈ 𝔽[𝑥] by τᵢ=∏ⁱ⁻¹ₕ₌₀(𝑥−𝑎ₕ) and ηᵢ=∏ⁱ⁻¹ₕ₌₀(𝑥−𝑏ₕ). Let V denote the subspace of 𝔽[𝑥] spanned by {𝑥ᵢ}ᴺᵢ₌₀. An element ψ ∈ End(𝑉) is called double lowering whenever ψτᵢ ∈ 𝔽τᵢ₋₁ and ψηᵢ ∈ 𝔽ηᵢ₋₁ for 0 ≤ 𝒾 ≤ 𝑁, where τ₋₁ = 0 and η₋₁ = 0. We give necessary and sufficient conditions on {𝑎ᵢ}ᴺ⁻¹ᵢ₌₀, {𝑏ᵢ}ᴺ⁻¹ᵢ₌₀ for there to exist a nonzero double lowering map. There are four families of solutions, which we describe in detail.
dc.description.sponsorshipThe author would like to thank Kazumasa Nomura for giving this paper a close reading and offering many valuable comments.
dc.identifier.citationDouble Lowering Operators on Polynomials. Paul Terwilliger. SIGMA 17 (2021), 009, 38 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2021.009
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 33D15; 15A21
dc.identifier.otherarXiv:2003.09666
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211179
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleDouble Lowering Operators on Polynomials
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
009-Terwilliger.pdf
Розмір:
599.28 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: