Double Lowering Operators on Polynomials
| dc.contributor.author | Terwilliger, Paul | |
| dc.date.accessioned | 2025-12-25T13:23:40Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | Recently, Sarah Bockting-Conrad introduced the double lowering operator ψ for a tridiagonal pair. Motivated by ψ, we consider the following problem about polynomials. Let 𝔽 denote an algebraically closed field. Let 𝑥 denote an indeterminate, and let 𝔽[𝑥] denote the algebra consisting of the polynomials in 𝑥 that have all coefficients in 𝔽. Let 𝑁 denote a positive integer or ∞. Let {𝑎ᵢ}ᴺ⁻¹ᵢ₌₀, {𝑏ᵢ}ᴺ⁻¹ᵢ₌₀ denote scalars in 𝔽 such that ∑ⁱ⁻¹ₕ₌₀𝑎ₕ ≠ ∑ⁱ⁻¹ₕ₌₀𝑏ₕ for 1 ≤ 𝒾 ≤ 𝑁. For 0 ≤ 𝒾 ≤ 𝑁 define polynomials τᵢ, ηᵢ ∈ 𝔽[𝑥] by τᵢ=∏ⁱ⁻¹ₕ₌₀(𝑥−𝑎ₕ) and ηᵢ=∏ⁱ⁻¹ₕ₌₀(𝑥−𝑏ₕ). Let V denote the subspace of 𝔽[𝑥] spanned by {𝑥ᵢ}ᴺᵢ₌₀. An element ψ ∈ End(𝑉) is called double lowering whenever ψτᵢ ∈ 𝔽τᵢ₋₁ and ψηᵢ ∈ 𝔽ηᵢ₋₁ for 0 ≤ 𝒾 ≤ 𝑁, where τ₋₁ = 0 and η₋₁ = 0. We give necessary and sufficient conditions on {𝑎ᵢ}ᴺ⁻¹ᵢ₌₀, {𝑏ᵢ}ᴺ⁻¹ᵢ₌₀ for there to exist a nonzero double lowering map. There are four families of solutions, which we describe in detail. | |
| dc.description.sponsorship | The author would like to thank Kazumasa Nomura for giving this paper a close reading and offering many valuable comments. | |
| dc.identifier.citation | Double Lowering Operators on Polynomials. Paul Terwilliger. SIGMA 17 (2021), 009, 38 pages | |
| dc.identifier.doi | https://doi.org/10.3842/SIGMA.2021.009 | |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2020 Mathematics Subject Classification: 33D15; 15A21 | |
| dc.identifier.other | arXiv:2003.09666 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/211179 | |
| dc.language.iso | en | |
| dc.publisher | Інститут математики НАН України | |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | |
| dc.title | Double Lowering Operators on Polynomials | |
| dc.type | Article |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 009-Terwilliger.pdf
- Розмір:
- 599.28 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: