Reduced Forms of Linear Differential Systems and the Intrinsic Galois-Lie Algebra of Katz
Завантаження...
Дата
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Generalizing the main result of [Aparicio-Monforte A., Compoint E., Weil J.-A., J. Pure Appl. Algebra 217 (2013), 1504-1516], we prove that a linear differential system is in reduced form in the sense of Kolchin and Kovacic if and only if any differential module in an algebraic construction admits a constant basis. Then we derive an explicit version of this statement. We finally deduce some properties of the Lie algebra of Katz's intrinsic Galois group.
Опис
Теми
Цитування
Reduced Forms of Linear Differential Systems and the Intrinsic Galois-Lie Algebra of Katz. Moulay Barkatou, Thomas Cluzeau, Lucia Di Vizio and Jacques-Arthur Weil. SIGMA 16 (2020), 054, 13 pages