Reduced Forms of Linear Differential Systems and the Intrinsic Galois-Lie Algebra of Katz

dc.contributor.authorBarkatou, Moulay
dc.contributor.authorCluzeau, Thomas
dc.contributor.authorDi Vizio, Lucia
dc.contributor.authorWeil, Jacques-Arthur
dc.date.accessioned2025-12-15T15:22:51Z
dc.date.issued2020
dc.description.abstractGeneralizing the main result of [Aparicio-Monforte A., Compoint E., Weil J.-A., J. Pure Appl. Algebra 217 (2013), 1504-1516], we prove that a linear differential system is in reduced form in the sense of Kolchin and Kovacic if and only if any differential module in an algebraic construction admits a constant basis. Then we derive an explicit version of this statement. We finally deduce some properties of the Lie algebra of Katz's intrinsic Galois group.
dc.description.sponsorshipWe are grateful to the anonymous referees for their relevant suggestions, which helped us to improve the clarity and quality of this work.
dc.identifier.citationReduced Forms of Linear Differential Systems and the Intrinsic Galois-Lie Algebra of Katz. Moulay Barkatou, Thomas Cluzeau, Lucia Di Vizio and Jacques-Arthur Weil. SIGMA 16 (2020), 054, 13 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2020.054
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 34M03; 34M15; 34C20
dc.identifier.otherarXiv:1912.10567
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210696
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleReduced Forms of Linear Differential Systems and the Intrinsic Galois-Lie Algebra of Katz
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
054-Barkatou.pdf
Розмір:
374.15 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: