Regular variation in the branching random walk

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

initial ancestor located at the origin of the real line. For n = 0, 1, . . . , let Wn be the moment generating function of Mn normalized by its mean. Denote by AWn any of the following random variables: maximal function, square function, L1 and a.s. limit W, supn≥0 |W − Wn|, supn≥0 |Wn+1 − Wn|. Under mild moment restrictions and the assumption that {W1 > x} regularly varies at ∞, it is proved that P{AWn > x} regularly varies at ∞ with the same exponent. All the proofs given are non-analytic in the sense that these do not use Laplace–Stieltjes transforms. The result on the tail behaviour of W is established in two distinct ways.

Опис

Теми

Цитування

Regular variation in the branching random walk / A. Iksanov, S. Polotskiy // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 38–54. — Бібліогр.: 25 назв.— англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced