Regular variation in the branching random walk
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
initial ancestor located at the origin of the real line. For n = 0, 1, . . . , let Wn be the moment generating function of Mn normalized by its mean. Denote by AWn any of
the following random variables: maximal function, square function, L1 and a.s. limit
W, supn≥0 |W − Wn|, supn≥0 |Wn+1 − Wn|. Under mild moment restrictions and
the assumption that {W1 > x} regularly varies at ∞, it is proved that P{AWn > x}
regularly varies at ∞ with the same exponent. All the proofs given are non-analytic in the sense that these do not use Laplace–Stieltjes transforms. The result on the tail behaviour of W is established in two distinct ways.
Опис
Теми
Цитування
Regular variation in the branching random walk / A. Iksanov, S. Polotskiy // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 38–54. — Бібліогр.: 25 назв.— англ.