Loops in SU(2), Riemann Surfaces, and Factorization, I

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

In previous work we showed that a loop g:S¹→SU(2) has a triangular factorization if and only if the loop g has a root subgroup factorization. In this paper we present generalizations in which the unit disk and its double, the sphere, are replaced by a based compact Riemann surface with boundary, and its double. One ingredient is the theory of generalized Fourier-Laurent expansions developed by Krichever and Novikov. We show that a SU(2) valued multiloop having an analogue of a root subgroup factorization satisfies the condition that the multiloop, viewed as a transition function, defines a semistable holomorphic SL(2,C) bundle. Additionally, for such a multiloop, there is a corresponding factorization for determinants associated to the spin Toeplitz operators defined by the multiloop.

Опис

Теми

Цитування

Loops in SU(2), Riemann Surfaces, and Factorization, I / E. Basor, D. Pickrell // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 21 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced