The Malgrange Form and Fredholm Determinants
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
We consider the factorization problem of matrix symbols relative to a closed contour, i.e., a Riemann-Hilbert problem, where the symbol depends analytically on parameters. We show how to define a function τ which is locally analytic on the space of deformations and that is expressed as a Fredholm determinant of an operator of ''integrable'' type in the sense of Its-Izergin-Korepin-Slavnov. The construction is not unique and the non-uniqueness highlights the fact that the tau function is really the section of a line bundle.
Опис
Теми
Цитування
The Malgrange Form and Fredholm Determinants / M. Bertola // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 15 назв. — англ.