The Malgrange Form and Fredholm Determinants

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We consider the factorization problem of matrix symbols relative to a closed contour, i.e., a Riemann-Hilbert problem, where the symbol depends analytically on parameters. We show how to define a function τ which is locally analytic on the space of deformations and that is expressed as a Fredholm determinant of an operator of ''integrable'' type in the sense of Its-Izergin-Korepin-Slavnov. The construction is not unique and the non-uniqueness highlights the fact that the tau function is really the section of a line bundle.

Опис

Теми

Цитування

The Malgrange Form and Fredholm Determinants / M. Bertola // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 15 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced