Algebra in the Stone-Čech compactification: applications to topologies on groups

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут прикладної математики і механіки НАН України

Анотація

For every discrete group G, the Stone-Čech compactification βG of G has a natural structure of compact right topological semigroup. Assume that G is endowed with some left invariant topology I and let τ¯ be the set of all ultrafilters on G converging to the unit of G in I. Then τ¯ is a closed subsemigroup of βG. We survey the results clarifying the interplays between the algebraic properties of τ¯ and the topological properties of (G,I) and apply these results to solve some open problems in the topological group theory. The paper consists of 13 sections: Filters on groups, Semigroup of ultrafilters, Ideals, Idempotents, Equations, Continuity in βG and G∗, Ramsey-like ultrafilters, Maximality, Refinements, Resolvability, Potential compactness and ultraranks, Selected open questions.

Опис

Теми

Цитування

Algebra in the Stone-Čech compactification: applications to topologies on groups / I.V. Protasov // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 1. — С. 83–110. — Бібліогр.: 62 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced