Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I
Завантаження...
Дата
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут прикладної математики і механіки НАН України
Анотація
We prove that the quiver of tiled order over a discrete valuation ring is strongly connected and simply laced. With
such quiver we associate a finite ergodic Markov chain. We introduce the notion of the index in A of a right noetherian semiperfect
ring A as the maximal real eigen-value of its adjacency matrix. A
tiled order Λ is integral if in Λ is an integer. Every cyclic Gorenstein tiled order is integral. In particular, in Λ = 1 if and only if
Λ is hereditary. We give an example of a non-integral Gorenstein
tiled order. We prove that a reduced (0, 1)-order is Gorenstein if
and only if either inΛ = w(Λ) = 1, or inΛ = w(Λ) = 2, where
w(Λ) is a width of Λ.
Опис
Теми
Цитування
Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I / Zh.T. Chernousova, M.A. Dokuchaev, M.A. Khibina, V.V. Kirichenko, S.G. Miroshnichenko, V.N. Zhuravlev // Algebra and Discrete Mathematics. — 2002. — Vol. 1, № 1. — С. 32–63. — назв. — англ.