Automorphisms of homogeneous symmetric groups and hierarchomorphisms of rooted trees

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут прикладної математики і механіки НАН України

Анотація

A representation of homogeneous symmetric groups by hierarchomorphisms of spherically homogeneous rooted trees are considered. We show that every automorphism of a homogeneous symmetric (alternating) group is locally inner and that the group of all automorphisms contains Cartesian products of arbitrary finite symmetric groups. The structure of orbits on the boundary of the tree where investigated for the homogeneous symmetric group and for its automorphism group. The automorphism group acts highly transitive on the boundary, and the homogeneous symmetric group acts faithfully on every its orbit. All orbits are dense, the actions of the group on different orbits are isomorphic as permutation groups.

Опис

Теми

Цитування

Automorphisms of homogeneous symmetric groups and hierarchomorphisms of rooted trees / Y.V. Lavrenyuk, V.I. Sushchansky // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 4. — С. 33–49. — Бібліогр.: 13 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced