Поточечная оценка комонотонного приближения

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

Доведено, що для неперервної на [- 1; 1 ] функції f(x) з обмеженою кількістю проміжків незростання і неспадання існує послідовність многочленів Pn(x), локально монотонних так само, як f(x) і |f(x)−Pn(x)|≤Cω₂(f;n⁻²+n⁻¹(√1−x²) , C — стала, яка залежить від довжини найменшого проміжку.
We prove that, for a continuous functionf(x) defined on the interval [−1,1] and having finitely many intervals where it is either nonincreasing or nondecreasing, one can always find a sequence of polynomialsP n (x) with the same local properties of monotonicity as the functionf(x) and such that ¦f(x)−P n (x) ¦≤Cω₂(f;n⁻²+n⁻¹√1−x²), whereC is a constant that depends on the length of the smallest interval.

Опис

Теми

Статті

Цитування

Поточечная оценка комонотонного приближения / Г.А. Дзюбенко // Український математичний журнал. — 1994. — Т. 46, № 11. — С. 1467–1472. — Бібліогр.: 9 назв. — рос.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced