Средние колебания и сходимость интегралов Пуассона
Завантаження...
Файли
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Знайдено умови на середні коливання періодичної сумовної функції, за яких із сумовності у точці методом Абеля - Пуассона її ряду Фур'є (спряженого ряду) випливає збіжність середніх Стєклова (існування спряженої функції) в цій точці. Аналогічні результати одержано для інтеграла Пуассона в ℝ₊ⁿ⁺¹.
We establish conditions for mean oscillations of a periodic summable function under which the summability of its Fourier series (conjugate series) by the Abel-Poisson method at a given point implies the convergence of Steklov means (the existence of the conjugate function) at the indicated point. Similar results are also obtained for the Poisson integral in ℝ₊ⁿ⁺¹.
We establish conditions for mean oscillations of a periodic summable function under which the summability of its Fourier series (conjugate series) by the Abel-Poisson method at a given point implies the convergence of Steklov means (the existence of the conjugate function) at the indicated point. Similar results are also obtained for the Poisson integral in ℝ₊ⁿ⁺¹.
Опис
Теми
Статті
Цитування
Средние колебания и сходимость интегралов Пуассона / В.И. Коляда // Український математичний журнал. — 1997. — Т. 49, № 2. — С. 206–222. — Бібліогр.: 10 назв. — рос.