Лiнiйнi нетеровi крайовi задачi для динамiчних систем на часовiй шкалi
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Встановлено необхiднi та достатнi умови розв’язностi нетерових крайових задач для систем динамiчних рiвнянь на часовiй шкалi. Дослiджено структуру множини розв’язкiв таких задач. Розглянуто приклад крайової задачi у випадку, коли часова шкала є канторовою множиною.
We find necessary and sufficient conditions for solvability of a Fredholm boundary-value problem for a system of dynamical equations on a time scale. The structure of solutions of this boundary-value problem is researched. An example of a Fredholm boundary-value problem has been considered in the case where the time scale is the Contor set.
We find necessary and sufficient conditions for solvability of a Fredholm boundary-value problem for a system of dynamical equations on a time scale. The structure of solutions of this boundary-value problem is researched. An example of a Fredholm boundary-value problem has been considered in the case where the time scale is the Contor set.
Опис
Теми
Цитування
Лiнiйнi нетеровi крайовi задачi для динамiчних систем на часовiй шкалi / О.А. Бойчук, О.П. Страх // Нелінійні коливання. — 2014. — Т. 17, № 2. — С. 170-179. — Бібліогр.: 4 назв. — укр.