A simplified proof of the reduction point crossing sign formula for Verma modules
Завантаження...
Файли
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут прикладної математики і механіки НАН України
Анотація
The Unitary Dual Problem is one of the most important open problems in mathematics: classify the irreducible unitary representations of a group. That is, classify all irreducible representations admitting a definite invariant Hermitian form. Signatures of invariant Hermitian forms on Verma modules are important to finding the unitary dual of a real reductive Lie group. By a philosophy of Vogan introduced in [Vog84], signatures of invariant Hermitian forms on irreducible Verma modules may be computed by varying the highest weight and tracking how signatures change at reducibility points (see [Yee05]). At each reducibility point there is a sign ε governing how the signature changes. A formula for ε was first determined in [Yee05] and simplified in [Yee19]. The proof of the simplification was complicated. We simplify the proof in this note.
Опис
Теми
Цитування
A simplified proof of the reduction point crossing sign formula for Verma modules / M.St. Denis, W.L. Yee // Algebra and Discrete Mathematics. — 2019. — Vol. 28, № 2. — С. 195–202. — Бібліогр.: 7 назв. — англ.