Asymptotics of Polynomials Orthogonal with respect to a Logarithmic Weight
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
In this paper, we compute the asymptotic behavior of the recurrence coefficients for polynomials orthogonal with respect to a logarithmic weight w(x)dx = log(2k/(1 - x))dx on (-1,1), with k > 1, and verify a conjecture of A. Magnus for these coefficients. We use Riemann-Hilbert/steepest-descent methods, but not in the standard way, as there is no known parametrix for the Riemann-Hilbert problem in a neighborhood of the logarithmic singularity at x = 1.
Опис
Теми
Цитування
Asymptotics of Polynomials Orthogonal with respect to a Logarithmic Weight / T.O. Conway, P. Deift // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 17 назв. — англ.