Asymptotics of Polynomials Orthogonal with respect to a Logarithmic Weight

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

In this paper, we compute the asymptotic behavior of the recurrence coefficients for polynomials orthogonal with respect to a logarithmic weight w(x)dx = log(2k/(1 - x))dx on (-1,1), with k > 1, and verify a conjecture of A. Magnus for these coefficients. We use Riemann-Hilbert/steepest-descent methods, but not in the standard way, as there is no known parametrix for the Riemann-Hilbert problem in a neighborhood of the logarithmic singularity at x = 1.

Опис

Теми

Цитування

Asymptotics of Polynomials Orthogonal with respect to a Logarithmic Weight / T.O. Conway, P. Deift // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 17 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced