Twisted de Rham Complex on Line and Singular Vectors in sl₂ˆ Verma Modules
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
We consider two complexes. The first complex is the twisted de Rham complex of scalar meromorphic differential forms on the projective line, holomorphic on the complement to a finite set of points. The second complex is the chain complex of the Lie algebra of sl₂-valued algebraic functions on the same complement, with coefficients in a tensor product of contragradient Verma modules over the affine Lie algebra sl₂ˆ. In [Schechtman V., Varchenko A., Mosc. Math. J. 17 (2017), 787-802] a construction of a monomorphism of the first complex to the second was suggested, and it was indicated that under this monomorphism, the existence of singular vectors in the Verma modules (the Malikov-Feigin-Fuchs singular vectors) is reflected in the relations between the cohomology classes of the de Rham complex. In this paper, we prove these results.
Опис
Теми
Цитування
Twisted de Rham Complex on Line and Singular Vectors in sl₂ˆ Verma Modules / A. Slinkin, A. Varchenko // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 9 назв. — англ.