Collective Heavy Top Dynamics
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
We construct a Poisson map M: T*C² → se(3)* with respect to the canonical Poisson bracket on T*C² ≅ T*ℝ⁴ and the (−)-Lie-Poisson bracket on the dual se(3)* of the Lie algebra of the special Euclidean group SE(3). The essential part of this map is the momentum map associated with the cotangent lift of the natural right action of the semidirect product Lie group SU(2)⋉C² on C². This Poisson map gives rise to a canonical Hamiltonian system on T*C² whose solutions are mapped by M to solutions of the heavy top equations. We show that the Casimirs of the heavy top dynamics and the additional conserved quantity of the Lagrange top correspond to the Noether conserved quantities associated with certain symmetries of the canonical Hamiltonian system. We also construct a Lie-Poisson integrator for the heavy top dynamics by combining the Poisson map M with a simple symplectic integrator, and demonstrate that the integrator exhibits either exact or near conservation of the conserved quantities of the Kovalevskaya top.
Опис
Теми
Цитування
Collective Heavy Top Dynamics / T. Ohsawa // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 17 назв. — англ.