Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

Let Σg,n be a compact oriented surface of genus g with n open disks removed. The algebra Lg,n(H) was introduced by Alekseev-Grosse-Schomerus and Buffenoir-Roche and is a combinatorial quantization of the moduli space of flat connections on Σg,n. Here we focus on the two building blocks L₀,₁(H) and L₁,₀(H) under the assumption that the gauge Hopf algebra H is finite-dimensional, factorizable, and ribbon, but not necessarily semisimple. We construct a projective representation of SL₂(Z), the mapping class group of the torus, based on L₁,₀(H), and we study it explicitly for H = Ūq(sl(2)). We also show that it is equivalent to the representation constructed by Lyubashenko and Majid.

Опис

Теми

Цитування

Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras / M. Faitg // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 39 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced