Generically, Arnold-Liouville Systems Cannot be Bi-Hamiltonian

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We state and prove that a certain class of smooth functions, said to be BH-separable, is a meagre subset for the Fréchet topology. Because these functions are the only admissible Hamiltonians for Arnold-Liouville systems admitting a bi-Hamiltonian structure, we get that, generically, Arnold-Liouville systems cannot be bi-Hamiltonian. At the end of the paper, we determine, both as a concrete representation of our general result and as an illustrative list, which polynomial Hamiltonians 𝐻 of the form 𝐻(𝑥, 𝑦) = 𝑥𝑦 + 𝑎𝑥³+𝑏𝑥²𝑦+𝑐𝑥𝑦²+𝑑𝑦³ are BH-separable.

Опис

Теми

Цитування

Generically, Arnold-Liouville Systems Cannot be Bi-Hamiltonian. Hassan Boualem and Robert Brouzet. SIGMA 17 (2021), 096, 17 pages

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced